Non–commutativity in Teleportation

نویسندگان

  • Sibasish Ghosh
  • Guruprasad Kar
  • Anirban Roy
  • Ujjwal Sen
چکیده

We show, using the no–disentanglement theorem, that to teleport (exactly) any set of non–commuting states (i.e., a set containing at least two non–commuting states), it is necessary to have an entangled channel. We further show that to teleport any set of commuting states it is sufficient to have a classically correlated channel. Using this result we provide a simple proof of the fact that any set of bipartite entangled states can be exactly disentangled if the single particle density matrices of any one party commute. The idea of quantum teleportation is to send an unknown state to a distant party without actually sending the particle itself. A protocol for this scheme was proposed by Bennett et. al. [1], where an entangled channel is required between the two parties. In this letter we discuss the necessity [email protected] [email protected] [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite groups with three relative commutativity degrees

‎‎For a finite group $G$ and a subgroup $H$ of $G$‎, ‎the relative commutativity degree of $H$ in $G$‎, ‎denoted by $d(H,G)$‎, ‎is the probability that an element of $H$ commutes with an element of $G$‎. ‎Let $mathcal{D}(G)={d(H,G):Hleq G}$ be the set of all relative commutativity degrees of subgroups of $G$‎. ‎It is shown that a finite group $G$ admits three relative commutativity degrees if a...

متن کامل

A COMMUTATIVITY CONDITION FOR RINGS

In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.

متن کامل

Some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation

‎Let $R$ be a $*$-prime ring with center‎ ‎$Z(R)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $R$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $'*'$‎. ‎Suppose that $U$ is an ideal of $R$ such that $U^*=U$‎, ‎and $C_{sigma,tau}={cin‎ ‎R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper‎, ‎it is shown that if charac...

متن کامل

Relative n-th non-commuting graphs of finite groups

‎Suppose $n$ is a fixed positive integer‎. ‎We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$‎, ‎associated to the non-abelian subgroup $H$ of group $G$‎. ‎The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G‎ : ‎[x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$‎. ‎Moreover‎, ‎${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x...

متن کامل

Classical phase-space descriptions of continuous-variable teleportation.

The non-negative Wigner function of all quantum states involved in teleportation of Gaussian states using the standard continuous-variable teleportation protocol means that there is a local realistic phase-space description of the process. This includes the coherent states teleported up to now in experiments. We extend the phase-space description to teleportation of non-Gaussian states using th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008